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Abstract. Explicit path integration is carried out for the Green’s functions of special relativistic harmonic
oscillators in (1 + 1)- and (3 + 1)-dimensional Minkowski space-time modeled by a Klein–Gordon particle
in the universal covering space-time of the anti-de Sitter static space-time. The energy spectrum together
with the normalized wave functions are obtained. In the non-relativistic limit, the bound states of the one-
and three-dimensional ordinary oscillators are regained.

1 Introduction

Relativistic problems that can be solved exactly by the
use of the path integral approach are very limited espe-
cially for two reasons.
(1) For a relativistic particle with spin, the propagator
cannot be described by a simple path integral based on
any reasonable action. The fact that the spin has no clas-
sical origin makes it difficult to propose for it continuous
paths [1].
(2) If the particles interact with each other or with an ex-
ternal potential, they can produce quantum effects which
cannot be described by path fluctuations alone. These ef-
fects can be handled by perturbation theory in the frame-
work of quantum field theory [2].

However, in recent years, there have been a few suc-
cessful examples where the difficulty which concerns the
spin has been handled. The Dirac propagator for a free
particle [3] has been derived in the framework of a model
where the spin is classically described by internal vari-
ables. The path integral treatments of the Dirac–Coulomb
problem [4] and a Dirac electron in a one-dimensional
Coulomb potential on the half-line and in the presence
of an external superstrong magnetic field [5] have been
obtained via the Biedenharn transformation [6]. The elec-
tron in the presence of a constant magnetic field [7] and the
problem of charged particles in interaction with an electro-
magnetic plane wave alone [8] or plus a parallel magnetic
field [9] have been studied by introducing a fifth param-
eter in order to bring the problem into a non-relativistic
form. The relativistic spinless Coulomb system [10] and
the Klein–Gordon particle in vector plus scalar Hulthén-
type potentials [11] have also been solved by path integra-
tion.

Recently, from various points of view ([12–16] and ref-
erences therein), there has been renewed interest for the
relativistic harmonic oscillators because of a crucial point.
Indeed, a simple replacement of the coordinates and gen-
eralized momenta in the corresponding classical Hamil-
tonian by their quantum mechanical counterparts is, in
general, not correct, since the ambiguity resulting from
ordering the operators must be resolved. To parameter-
ize the operator ordering ambiguity of the position and
the momentum operators, we show that it is necessary
to introduce two parameters α and β which cannot be
freely chosen. The problem of the quantum relativistic os-
cillators represented by quantum free relativistic particles
on the universal covering space-time of the anti-de Sitter
static space-time (CAdS) is a model characterized by a
constraint on these parameters. This model is called one
of “special quantum relativistic oscillators” in the sense
that α and β are chosen to adjust the non-relativistic limit
and to preserve the reality of the energy spectrum of the
physical system.

To our knowledge, there is no path integral discussion
for the quantum relativistic harmonic oscillators. The pur-
pose of the present paper is to fill this gap. The treatment
will be restricted to spinless systems.

Our study is organized in the following way: in Sect. 2,
we construct the path integral associated with the (1+1)-
dimensional special relativistic harmonic oscillator. The
Green’s function is derived in closed form, from which
we obtain the energy spectrum and the normalized wave
functions. In Sect. 3, we extend the discussion to the (3 +
1)-dimensional case. The radial Green’s function is also
given in closed form. The energy levels and the normalized
wave functions are then deduced. Section 4 will contain our
conclusion.
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2 The (1 + 1)-dimensional special
relativistic oscillator

The relativistic harmonic oscillator interaction in (1 + 1)
Minkowski space-time is equivalent to a free relativistic
particle in the universal covering space-time of the anti-de
Sitter space-time (CAdS). For a static form of the anti-de
Sitter space-time metric, the line element is given by

ds2 = Λ(x)c2dt2 − 1
Λ(x)

dx2, (1)

where

Λ(x) = 1 +
ω2

c2 x2. (2)

Classical mechanics is described in this space by the clas-
sical Lagrangian and Hamiltonian, respectively:

L = −Mc

√
1 − 1

Λ(x)
v2

c2 +
ω2

c2 x2, (3)

H2 = M2c4 +p2c2 +M2ω2c2x2 +2ω2x2p2 +
ω4

c2 x4p2. (4)

If we proceed by adopting the substitutions H → P̂0 =
i� ∂

∂t , p → P̂x = �

i
∂
∂x , x → x̂, there is an ambiguity which

results from ordering the operators in the quantum me-
chanical counterpart of (4). Since there exist different ways
to put the terms x4p2 and x2p2 into symmetrically ordered
forms, we can construct a number of Hermitian mechan-
ical quantum counterparts of (4). In order to avoid this
ambiguity, we write all the Hermitian forms for each term
as a linear combination. Whence, after calculation of all
the commutators, we find the following replacements:

x4p2 → −�
2
(

x4 d2

dx2 + 4x3 d
dx

+ αx2
)

,

x2p2 → −�
2
(

x2 d2

dx2 + 2x
d
dx

+ β

)
,

(5)

where the parameters α and β occur; they will be fixed
below.

The Green’s function G(x′′, x′) that we consider obeys
the Klein–Gordon equation{

� + κΛ(x) + (1 − α + 2β)
ω4

c4 x2 +
ω2

c2

}
G(x′′, x′)

= − 1
�2c2 δ (x′′ − x′) , (6)

where

� =
1
c2

∂2

∂t2
− Λ(x)

∂2

∂x2 Λ(x), (7)

and

κ =
(

Mc

�

)2

+ (1 − 2β)
ω2

c2 . (8)

Note that choosing to work with the symmetrically or-
dered form (7) of the d’Alembertian operator, the quan-
tization of the original problem will not be modified.

By using Schwinger’s integral representation [17], the
solution of the differential equation (6) can be written as
follows:

G(x′′, x′) =
1

2i�c2

∫ ∞

0
dλ 〈x′′, t′′| exp

[
i
�
Ĥλ

]
|x′, t′〉 , (9)

where the integrand 〈x′′, t′′| exp
[

i
�
Ĥλ
]
|x′, t′〉 is similar to

the propagator of a quantum system evolving in λ time
from (x′, t′) to (x′′, t′′) with the effective Hamiltonian,

Ĥ =
1
2

[
−Λ(x)P̂ 2

xΛ(x) +
P̂ 2

0

c2 − �
2κΛ(x)

− �
2(1−α +2β)

ω4

c4 x2 − �
2ω2

c2

]
. (10)

The integrand in (9) may be written as the path integral
[8,9,11,18,19]

P (x′′, t′′, x′, t′; λ) = 〈x′′, t′′| exp
[

i
�
Ĥλ

]
|x′, t′〉 (11)

= lim
N→∞

∫ N∏
n=1

dxndtn

N+1∏
n=1

d(Px)n

2π�

d(P0)n

2π�
exp

{
i
�

N+1∑
n=1

Aε
1

}
,

with the short-time action

Aε
1 = (P0)n�tn − (Px)n�xn

+
ε

2

(
(P0)2n

c2 − Λ(xn)Λ(xn−1)(Px)2n (12)

−�
2 ω2

c2 − �
2κΛ(xn) − �

2(1 − α + 2β)
ω4

c4 x2
n

)
,

where
ε =

λ

N + 1
= sn − sn−1, (13)

and s ∈ [0, λ] is a new time-like variable.
Let us first notice that the integrations on the vari-

ables tn give N Dirac distributions δ ((P0)n − (P0)n+1).
Thereafter the integrations on (P0)n give (P0)1 = (P0)2 =
... = (P0)N+1 = E. The propagator (11) then becomes

P (x′′, t′′, x′, t′; λ) (14)

=
∫ +∞

−∞

dE

2π�
exp
[
− i

�
E(t′′ − t′)

]
PE(x′′, x′; λ),

where the kernel PE(x′′, x′; λ) is given by

PE(x′′, x′; λ) (15)

= lim
N→∞

∫ N∏
n=1

dxn

N+1∏
n=1

d(Px)n

2π�
exp

[
i
�

N+1∑
n=1

Aε
2

]
,

with the short-time action

Aε
2 = −(Px)n�xn +

ε

2

[
− Λ(xn)Λ(xn−1)(Px)2n

+
�

2ω2

c2

(
E2

�2ω2 − 1
)

−�
2κΛ(xn) − �

2(1 − α + 2β)
ω4

c4 x2
n

]
. (16)
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Note that (14) is invariant under the change E → −E.
Then, by integrating with respect to the variables

(Px)n, we get

PE(x′′, x′; λ) =
1√

Λ(x′)Λ(x′′)
lim

N→∞

N+1∏
n=1

[
1

2iπ�ε

]1/2

×
N∏

n=1

[∫
dxn

Λ(xn)

]
exp

[
i
�

N+1∑
n=1

Aε
3

]
, (17)

with the short-time action in configuration space

Aε
3 =

�x2
n

2εΛ(xn)Λ(xn−1)
+

ε

2
�

2
[(

E2

�2ω2 − 1
)

ω2

c2

−κΛ(xn) − (1 − α + 2β)
ω4

c4 x2
n

]
. (18)

Substituting (14) into (9), we can rewrite (9) in the
form

G(x′′, x′) =
∫ +∞

−∞

dE

2π�
exp
[
− i

�
E(t′′ − t′)

]
GE(x′′, x′),

(19)
with

GE(x′′, x′) =
1

2i�c2

∫ ∞

0
dλPE(x′′, x′; λ). (20)

If we now introduce a new variable un together with a
rescaling of time [20] from ε to σn given by

xn =
c

ω
sinhun,

ε = σn
c2

ω2

1
cosh un cosh un−1

,
(21)

and incorporate the constraint

λ =
c2

ω2

∫ S

0

ds

cosh2 u
, (22)

by using the identity

c2/ω2

cosh u′′ cosh u′

∫ ∞

0
dSδ

(
λ − c2

ω2

∫ S

0

ds

cosh2 u

)
= 1,

(23)
the path integral (20) can be written as

GE(x′′, x′) =
1

2i�ωc (cosh u′′ cosh u′)3/2

×
∫ ∞

0
dSP (u′′, u′; S), (24)

where

P (u′′, u′; S)

= lim
N→∞

∫ N+1∏
n=1

[
1

2iπ�σn

]1/2 N∏
n=1

dun exp

{
i
�

N+1∑
n=1

[
�u2

n

2σn

+
�u4

n

8σn

(
1
3

− 1
cosh2 ũn

)
− �

2

2

(
c2

ω2 κ − E2/�
2ω2 − 1

cosh2 ũn

+(1 − α + 2β) tanh2 ũn

)
σn

]}
. (25)

Here, we have used the usual abbreviations �un = un −
un−1, ũn = (un +un−1)/2, u′ = u(0) and u′′ = u(S). Note
that the term in (�un)4 contributes significantly to the
path integral. It can be estimated by using the formula
[21] ∫ +∞

−∞
exp(−α1x

2 + α2x
4)dx

=
∫ +∞

−∞
exp
(

−α1x
2 +

3α2

4α2
1

)
dx, (26)

valid for |α1| large and Re(α1) > 0. This leads to

P (u′′, u′; S) (27)

=
∫

Du(s) exp

{
i
�

∫ S

0

[
.
u

2

2
− �

2

2

(
c2

ω2 κ +
1
4

)

+
�

2

2
E2/�

2ω2 − 1/4
cosh2 u

− �
2

2
(1 − α + 2β) tanh2 u

]
ds

}
.

By noting that tanh2 u = 1 − (1/cosh2 u), this last path
integral is identical in form with that of the symmetric
Rosen–Morse potential [22] which has been studied re-
cently [23–27], but in order to obtain the equivalent to
the Klein–Gordon equation in the AdS space-time we im-
pose a restriction on the parameters α and β defined by
the following two equations:

1 − α + 2β = 0, (28)

(1 − 2β)
ω2

c2 = ξR, (29)

where R = −2ω2/c2 is the scalar curvature and ξ is a
numerical factor. From this it follows that

α = 2ξ + 2 and β = ξ +
1
2
. (30)

In this case, the propagator (27) reduces to

P (u′′, u′; S)

=
∫

Du(s) exp

{
i
�

∫ S

0

[
.
u

2

2
− �

2

2

((
Mc2

�ω

)2

− 2ξ +
1
4

)

+
�

2

2
E2/�

2ω2 − 1/4
cosh2 u

]
ds

}
, (31)

which is likewise the propagator relative to a symmetric
Rosen–Morse potential. The Green’s function associated
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with this potential has been evaluated through various
path integration techniques [23–27]. The result is

G(u′′, u′; E) =
∫ +∞

0
dSP (u′′, u′; S)

= − i
�
Γ (γ − lE)Γ (1 + lE + γ)

×P−γ
lE

(tanhu′′)P−γ
lE

(− tanhu′), (32)

where P−γ
lE

(tanhu) is the associated Legendre function
with

lE = −1
2

+
E

�ω
, (33)

and

γ = ±1
2

√
1 + 4N2 − 8ξ, N =

Mc2

�ω
. (34)

If we take into account (30), insert (32) into (24), and
remember the first equation of the transformation (21),
we obtain the Green’s function for the one-dimensional
special relativistic harmonic oscillator under consideration

GE(x′′, x′) = −Γ (γ − lE)Γ (1 + lE + γ)
2�2ωc

×
[(

1 +
ω2

c2 x′′2
)(

1 +
ω2

c2 x′2
)]−3/4

(35)

×P−γ
lE


ω

c
x′′√

1 +
ω2

c2 x′′2

P−γ
lE

−
ω

c
x′√

1 +
ω2

c2 x′2

 .

The poles of the Green’s function yield the discrete
energy spectrum. These are just the poles of Γ (γ − lE)
which occur when γ − lE = −n for n = 0, 1, 2, ... They are
given through the equations

1
2

− E

�ω
± 1

2

√
1 + 4N2 − 8ξ = −n. (36)

So, algebraically we obtain two distinct sets of energy lev-
els according to the positive and negative signs of the pa-
rameter γ. But we have to check whether the correspond-
ing wave functions, which will be expressed in terms of
the Legendre functions of the first kind P−γ

lE
(y), satisfy

the boundary conditions for

y =
ω

c
x/

√
1 +

ω2

c2 x2 → ±1.

By inspecting their asymptotic behaviors [28]

P−γ
lE

(y) �
y→1

(1 − y)γ/2

2γ/2Γ (1 + γ)
;

γ �= 0, −1, −2, −3, ..., (37)

P−γ
lE

(y) �
y→−1



−Γ (−γ)
2γ/2π

sin(lEπ)(1 + y)γ/2

for Re(γ) < 0,

2γ/2Γ (γ)
Γ (1 + lE + γ)Γ (γ − lE)

(1 + y)−γ/2

for Re(γ) > 0,

(38)

we see that P−γ
lE

(y) diverges if Re(γ) < 0. Therefore, we
must choose the positive sign of γ, and hence the energy
eigenvalues are

En =
(

n +
1
2

+
1
2

√
1 + 4N2 − 8ξ

)
�ω. (39)

On the other hand, the reality of the parameter γ im-
plies the following range of the numerical factor ξ < (1/8)
× (1 + 4N2

)
.

In the limit c → ∞, the energy spectrum approaches

ENR
n + Mc2 = �ω

(
n +

1
2

)
+ Mc2. (40)

The first term gives the energy levels in the non-relativistic
case and the second term is the rest energy of the harmonic
oscillator.

The corresponding energy eigenfunctions can be found
by approximation near the poles γ − lE ≈ −n:

Γ (γ − lE) ≈ (−1)n

n!
1

γ − lE + n

=
(−1)n+1

n!

2
(

n + γ +
1
2

)
�

2ω2

E2 − E2
n

. (41)

Using this behavior and the known property of the sym-
metry of the associated Legendre functions under spatial
reflection, x → −x, we get the contribution of the bound
states to the spectral representation of the Green’s func-
tion as

GE(x′′, x′) =
∞∑

n=0

ω

c

n + γ +
1
2

n! (E2 − E2
n)

Γ (2γ + n + 1)

×
(

1 +
ω2

c2 x′′2
)−3/4(

1 +
ω2

c2 x′2
)−3/4

×P−γ
n+γ


ω

c
x′′√

1 +
ω2

c2 x′′2



×P−γ
n+γ


ω

c
x′√

1 +
ω2

c2 x′2


=

∞∑
n=0

Ψγ
n (x′′)Ψγ∗

n (x′)
E2 − E2

n

. (42)

The properly normalized wave functions are thus
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Ψγ
n (x) =

ω

c

n + γ +
1
2

n!
Γ (2γ + n + 1)


1/2

(43)

×
(

1 +
ω2

c2 x2
)−3/4

P−γ
n+γ


ω

c
x√

1 +
ω2

c2 x2

 .

Taking into account the relation between the Gegenbauer
polynomials and the associated Legendre functions (see
formula (8.936) p. 1031 in [29])

Cλ
n(t) =

Γ (2λ + n)Γ
(

λ +
1
2

)
Γ (2λ)Γ (n + 1)

×
[
1
4
(
t2 − 1

)]1/4−λ/2

P
1/2−λ
λ+n−1/2(t), (44)

and using the doubling formula (see (8.335.1), p. 938 in
[29])

Γ (2x) =
22x−1
√

π
Γ (x)Γ

(
x +

1
2

)
, (45)

we can also express (43) in the form

Ψγ
n (x) =

ω

c

(
γ + n +

1
2

)
n!

Γ (2γ + n + 1)


1/2

×(2i)γΓ

(
γ +

1
2

)(
1 +

ω2

c2 x2
)−(1/2)(γ+(3/2))

×Cγ+1/2
n


ω

c
x√

1 +
ω2

c2 x2

 . (46)

In the limit c → ∞, γ → N = (Mc2)/(�ω) and with
the help of the formula (see (8.328.1), p. 937 in [29])

lim
z→∞

Γ (z + a)
Γ (z)

e−a ln z = 1, (47)

we see that

lim
c→∞ γn/2

ω

c

(
γ + n +

1
2

)
n!

Γ (2γ + n + 1)


1/2

(2)γΓ

(
γ +

1
2

)

= lim
c→∞

[
ω

c
√

π

n!
2n

]1/2

Γ

(
γ +

1
2

)
Γ (γ)


1/2

=
(

Mω

π�

)1/4√
n!
2n

. (48)

By the use of the limit relation (see (8.936.5), p. 1031 in
[29])

lim
λ→∞

λ−n/2Cλ/2
n

(
t

√
2
λ

)
=

2−n/2

n!
Hn(t), (49)

the wave functions of the harmonic oscillator in the non-
relativistic approximation are naturally regained:

lim
c→∞ Ψγ

n (x) =
(

Mω

π�

)1/4 1√
2nn!

e−(Mω)/(2�)x2

×Hn

(√
Mω

�
x

)
, (50)

where Hn

(
(Mω/�)1/2x

)
is the Hermite polynomial of nth

order.

3 The (3 + 1)-dimensional special
relativistic oscillator

The special relativistic harmonic oscillator in (3 + 1)
Minkowski space-time is simulated in the universal cov-
ering space-time (CAdS) of the anti-de Sitter space-time
with a negative curvature R = −12ω2/c2 and a static
metric of the form

ds2 = Λ(r)c2dt2 − 1
Λ(r)

dr2 − r2 (dθ2 + sin2 θdφ2) , (51)

where

Λ(r) = 1 +
ω2

c2 r2 (52)

is chosen in order to impose the non-relativistic limit.
The Lagrangian reads

L = −Mc

√
Λ(r) − v2

c2 +
ω2

c4

(
→
r

→
v )2

Λ(r)
, (53)

and the classical Hamiltonian is given by

H2 = Λ(r)
(
M2c4 + p2c2 + ω2(

→
r

→
p )2
)

. (54)

As in the one-dimensional relativistic oscillator, to con-
struct the quantum mechanical counterpart of (54), we
must respect the ordering ambiguity of the position and
momentum operators. Similarly to (5), we will be led to
make the following substitutions:

x4
i p

2
i → −�

2
(

x4
i

∂2

∂x2
i

+ 4x3
i

∂

∂xi
+ αx2

i

)
,

x2
i p

2
i → −�

2
(

x2
i

∂2

∂x2
i

+ 2xi
∂

∂xi
+ β

)
,

x3
i pi → −i�

(
x3

i

∂

∂xi
+

3
2
x2

i

)
,

xipi → −i�
(

xi
∂

∂xi
+

1
2

)
.

(55)
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The Green’s function G(
→
r′′, t′′,

→
r′, t′) for the problem sat-

isfies the Klein–Gordon equation

(� + U(r)) G(
→
r

′′
, t′′;

→
r

′
, t′)

= − 1
�2c2 δ

(→
r

′′ − →
r

′)
δ (t′′ − t′) , (56)

where

� =
1
c2

∂2

∂t2
− Λ(r)

1
r2

∂

∂r
r2 ∂

∂r
Λ(r) + Λ(r)

l̂2

�2r2 , (57)

(l̂2 is the square of the orbital angular momentum opera-
tor), and U(r) is the central potential

U(r) =
�

2ω2

c2

[
4β − α − M2c4

�2ω2 − 8

+
(

α + 2β +
7
2

)
Λ(r)

]
. (58)

It follows that the Green’s function G(
→
r′′, t′′,

→
r′, t′) can be

expanded into partial waves [30] in spherical polar coor-
dinates

G(
→
r′′, t′′,

→
r′, t′) (59)

=
1

r′′r′

∞∑
l=0

Gl(r′′, t′′, r′, t′)Y m∗
l (θ′′, φ′′)Y m

l (θ′, φ′),

where the radial Green’s function, expressed in the
Schwinger integral representation [17], is

Gl(r′′, t′′, r′, t′) (60)

=
1

2i�c2

∫ ∞

0
dλ 〈r′′, t′′| exp

[
i
�
Ĥlλ

]
|r′, t′〉 .

The integrand in (60) is similar to the propagator of an
harmonic oscillator which evolves in the time-like param-
eter λ with the effective Hamiltonian

Ĥl =
1
2

[
−Λ(r)P̂ 2

r Λ(r) +
P̂ 2

0

c2

−�
2l(l + 1)

Λ(r)
r2 + U(r)

]
. (61)

To find the energy eigenvalues Enr,l and the wave func-
tions Ψnr,l(r) = r−1Φnr,l(r), we may evaluate (60) by path
integration. The effective Hamiltonian (60) involves a cen-
trifugal barrier which possesses a singularity at r = 0, so
that the discrete form of the expression (60) is not de-
fined due to a path collapse. To obtain a tractable and
stable path integral, we introduce an appropriate regulat-
ing function (following Kleinert [31]) and write (60) in the
form

Gl(r′′, t′′, r′, t′) =
1

2i�c2

∫ ∞

0
dSPl(r′′, t′′, r′, t′; S), (62)

where the transformed path integral is given in the canon-
ical form by

Pl(r′′, t′′, r′, t′; S)

= fR(r′′)fL(r′) 〈r′′, t′′| exp
[

i
�
SfL(r)ĤlfR(r)

]
|r′, t′〉

= fR(r′′)fL(r′)
∫

Dr(s)Dt(s)
∫

DPr(s)DP0(s)
(2π�)2

× exp

{
i
�

∫ S

0
ds
[
−Pr

.
r +P0

.
t +fL(r)HlfR(r)

]}

= fR(r′′)fL(r′) lim
N→∞

N∏
n=1

[∫
drndtn

]

×
N+1∏
n=1

[∫
d(Pr)nd(P0)n

(2π�)2

]
exp

{
i
�

N+1∑
n=1

Aεs
1

}
, (63)

with the short-time action

Aεs
1 = −(Pr)n�rn + (P0)n�tn

+
εs

2
fL(rn)

[
−Λ(rn)Λ(rn−1)(Pr)2n +

(P0)2n
c2

−�
2l(l + 1)

Λ(rn)
r2
n

+ U(rn)
]

fR(rn−1), (64)

and

εs =
S

N + 1
= �sn =

�τn

fL(rn)fR(rn−1)
;

�τn = ετ =
λ

N + 1
. (65)

The regulating function is defined as [31]

f(r) = fL(r)fR(r) = f1−λ′
(r)fλ′

(r). (66)

As in the (1 + 1)-dimensional case, by doing succes-
sively the tn and (P0)n integrations we arrive at

Pl(r′′, t′′, r′, t′; S) (67)

=
1

2π�

∫ +∞

−∞
dE exp

[
− i

�
E(t′′ − t′)

]
Pl(r′′, r′; S),

where the invariant kernel Pl(r′′, r′; S) under the change
E → −E is given by

Pl(r′′, r′; S) = fR(r′′)fL(r′) lim
N→∞

N∏
n=1

[∫
drn

]
(68)

×
N+1∏
n=1

[∫
d(Pr)n

(2π�)

]
exp

{
i
�

N+1∑
n=1

Aεs
2

}
,

with

Aεs
2 = −(Pr)n�rn

+
εs

2
fL(rn)

[
−Λ(rn)Λ(rn−1)(Pr)2n +

E2

c2

−�
2l(l + 1)

Λ(rn)
r2
n

+ U(rn)
]

fR(rn−1). (69)
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Substituting (67) into (62), we observe that the t-depen-
dent term does not contain the variable S. Therefore, we
can rewrite the partial Green’s function (62) in the form

Gl(r′′, t′′, r′, t′) (70)

=
1

2π�

∫ +∞

−∞
dE exp

[
− i

�
E(t′′ − t′)

]
Gl(r′′, r′),

with
Gl(r′′, r′) =

1
2i�c2

∫ ∞

0
dSPl(r′′, r′; S). (71)

The path integration of the kernel Pl(r′′, r′; S) can be
performed for any splitting parameter λ′. However, to sim-
plify the calculation, we prefer to work with the mid-point
prescription by taking λ′ = 1/2. This can be justified by
the fact that the final result is independent of this param-
eter. Then, by integrating with respect to the variables
(Pr)n, we find

Pl(r′′, r′; S) (72)

=
[f(r′)f(r′′)]1/4√

Λ(r′)Λ(r′′)
lim

N→∞

N+1∏
n=1

√
1

2iπ�εs

×
N∏

n=1

[∫
drn

Λ(rn)
√

f(rn)

]
exp

{
i
�

N+1∑
n=1

Aεs
3

}
,

with the short-time action in configuration space

Aεs
3 =

�r2
n

2εsΛ(rn)Λ(rn−1)
√

f(rn)f(rn−1)
(73)

+
εs

2
f(rn)

[
E2

c2 − �
2l(l + 1)

Λ(rn)
r2
n

+ U(rn)
]

.

We now use the following space transformation: r → u,
r ∈ [0, ∞[, u ∈ ]−∞, ∞[ defined by

r =
c

ω
eu. (74)

The appropriate regulating function is then defined by

f(r(u)) =
c2

4ω2 cosh2 u
. (75)

By taking into account all the quantum corrections
arising, of course, from the transformations (74) and (75),
the Green’s function (71) can straightforwardly be written
as follows:

Gl(r′′, r′) =
1

4i�ωc
√

Λ(r′′)Λ(r′) cosh u′′ cosh u′

×
∫ ∞

0
dSPl(u′′, u′; S), (76)

with

Pl(u′′, u′; S)

=
∫

Du(s) exp

 i
�

∫ S

0

 .
u

2

2
− �

2

4
(
ν2 + k2 (77)

+
(
ν2 − k2) tanhu

)
+

�
2

8

E2

�2ω2 + 4β − α − 2

cosh2 u


 ,

where ν2 = N2 − 2β − α + (11/4), k = l + (1/2) and
N = Mc2/�ω.

This kernel is formally identical with that of the gen-
eral Rosen–Morse (or general modified Pöschl–Teller) po-
tential studied recently [23–26]. The Green’s function as-
sociated to this potential is

G(u′′, u′; ERM ′) =
∫ ∞

0
dSPl(u′′, u′; S). (78)

As is shown by Kleinert [31], the Green’s function of the
general Rosen–Morse potential is related to the fixed-
energy amplitude for the mass point subjected to an an-
gular barrier near the surface of a sphere in D = 4 dimen-
sions by

G(u′′, u′; ERM ′) =
1√

sin θ′′ sin θ′ G(θ′′, θ′; EPT ′) (79)

= − i
�

Γ (M1 − LE)Γ (LE + M1 + 1)
Γ (M1 + M2 + 1)Γ (M1 − M2 + 1)

×
(

1 + tanhu′

2

)(M1−M2)/2(1 − tanhu′

2

)(M1+M2)/2

×
(

1 − tanhu′′

2

)(M1+M2)/2(1 + tanhu′′

2

)(M1−M2)/2

×F

(
M1−LE , LE +M1+1; M1−M2+1;

1 + tanhu′

2

)
×F

(
M1−LE , LE +M1+1; M1+M2+1;

1 − tanhu′′

2

)
,

with tanhu = − cos θ, θ ∈ (0, π) , u ∈ ]−∞, +∞[ and
u′′ > u′. Here, the mass point is taken equal to unity.
In addition, we set

LE = −1
2

+
(

1
16

+
2EPT ′

�

)1/2

,

EPT ′ =
�

2

8

(
E2

�2ω2 + 4β − α − 5
4

)
,

(80)

and if we choose
M1 =

1
2

(√
N2 − 2β − α +

11
4

+ l +
1
2

)
,

M2 =
1
2

(√
N2 − 2β − α +

11
4

− l − 1
2

)
,

(81)

the boundary conditions for the wave functions appearing
in (79) will be satisfied.

The equivalence between the relativistic harmonic os-
cillator interaction in (3 + 1) Minkowski space-time and a
free relativistic particle in CAdS is characterized by the
following restriction on the parameters α and β:

α = 8ξ, β = 2ξ +
1
4
. (82)
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Inserting (79) into (76), we get, for the radial Green’s
function, the closed form

Gl(r′′, r′) = − Γ (M1 − LE)Γ (LE + M1 + 1)
4�2ωcΓ (M1 + M2 + 1)Γ (M1 − M2 + 1)

× (Λ(r′′)Λ(r′) cosh u′′ cosh u′)−1/2 (83)

×
(

1 + tanhu′

2

)(M1−M2)/2(1 − tanhu′

2

)(M1+M2)/2

×
(

1 − tanhu′′

2

)(M1+M2)/2(1 + tanhu′′

2

)(M1−M2)/2

×F

(
M1 − LE , LE + M1 + 1; M1 − M2 + 1;

1 + tanhu′

2

)
×F

(
M1 − LE , LE + M1 + 1; M1 + M2 + 1;

1 − tanhu′′

2

)
.

The poles of (83) are all contained in the first Γ function
in the numerator,

M1 − LE = −nr. (84)

Converting this into energy by using (80), (81) and (84)
yields

Enr,l = βnr,l�ω, (85)

with

βnr,l = 2nr + l +
1
2

√
9 + 4N2 − 48ξ +

3
2
, (86)

where nr is the radial quantum number and l the angu-
lar momentum. Here, the parameter ξ is subject to the
condition ξ < (1/48)(9 + 4N2).

In the non-relativistic approximation

Enr,l →
c→∞

(
2nr + l +

3
2

)
�ω + Mc2, (87)

where the first term represents the well-known energy
spectrum of the three-dimensional non-relativistic harmo-
nic oscillator.

As in the one-dimensional case, the radial wave func-
tions can be found by approximation near the poles M1 −
LE ≈ −nr:

Γ (M1 − LE) ≈ (−1)nr

nr!
1

M1 − LE + nr

=
(−1)nr+1

nr!
4�

2ω2βnr,l

E2 − E2
nr,l

. (88)

Using this behavior and taking into consideration the
Gauss transformation formula (see (9.131.2), p. 1043 in
[29])

F (a, b, c; z) =
Γ (c)Γ (c−a−b)
Γ (c−a)Γ (c−b)

×F (a, b, a+b−c+1; 1−z) +
Γ (c)Γ (a+b−c)

Γ (a)Γ (b)
(89)

×(1−z)c−a−bF (c−a, c−b, c−a−b+1; 1−z),

knowing that the second term of this latter is null because
the Euler function Γ (a) is infinite (a = −nr ≤ 0), we can
write (83) as

Gl(r′′, r′) =
∞∑

nr=0

Φnr,l(r′′)Φ∗
nr,l(r

′)
E2 − E2

nr,l

, (90)

where

Φnr,l(r) =

2βnr,lΓ (βnr,l − nr) Γ

(
nr + l +

3
2

)
nr!Γ

(
βnr,l − nr − 1

2

)


1/2

× 1

Γ

(
l +

3
2

) (ω

c

)l+3/2
rl

(
1+

ω2

c2 r2
)nr−βnr,l/2

×F

−nr, βnr,l − nr; l +
3
2
;

ω2

c2 r2

1 +
ω2

c2 r2

 (91)

are the radial wave functions.
By substituting (see (9.131.1), p. 1043 in [29])

F (α, β; γ; z) = (1 − z)−αF

(
α, γ − β; γ;

z

z − 1

)
(92)

into (91) and using the connecting formula (see (8.962.1),
p. 1036 in [29])

P (α,β)
n (x) =

Γ (n + α + 1)
n!Γ (α + 1)

(93)

×F

(
−n, n + α + β + 1; α + 1;

1 − x

2

)
,

we can also express (91) in the form

Φnr,l(r) =

 2βnr,lnr!Γ (βnr,l − nr)

Γ (nr + γ + 1) Γ

(
nr + l +

3
2

)


1/2

×
(ω

c

)l+3/2
rl

(
1 +

ω2

c2 r2
)−(1/2)βnr,l

×P
(l+1/2,−βnr,l)
nr

(
1 + 2

ω2

c2 r2
)

. (94)

By using the following limiting relations:

lim
γ→∞ Γ (n + γ + 1) = lim

γ→∞ γn+1Γ (γ),

lim
γ→∞

(
1 +

ω2

c2 r2
)−(1/2)(l+γ+3/2)

= e−(Mω)/(2�)r2
,

lim
γ→∞ F

(
α, γ; ν;

z

γ

)
= F (α, ν; z),

(95)
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we obtain the well-known radial wave functions of the non-
relativistic harmonic oscillator

Φnr,l(r) =

2Γ

(
nr + l +

3
2

)
nr!


1/2(

Mω

�

)(1/2)(l+3/2)

× rl

Γ

(
l +

3
2

) (96)

× exp
[
−Mω

2�
r2
]

F

(
−nr, l +

3
2
;
Mω

�
r2
)

.

4 Conclusion

In this paper we have dealt with special relativistic har-
monic oscillators in (1 + 1)- and (3 + 1)-dimensional
Minkowski space-time modeled by a free relativistic par-
ticle in the universal covering space-time of the anti-de
Sitter space-time. The explicit path integral solution, as
presented above, provides a valuable alternative way to
the one obtained through the Klein–Gordon equation. Af-
ter formulating the problem in terms of symmetric and
general Rosen–Morse potentials for the one- and three-
dimensional relativistic oscillators, respectively, and by
imposing a restriction on the parameters α and β in such
a way that the system under consideration is equivalent to
a free relativistic particle in CAdS, the Green’s functions
are obtained in a closed form. The energy spectrum and
the properly normalized wave functions are extracted from
the poles and the residues at the poles of the Green’s func-
tion, respectively. In the flat-space limit (R → 0), that is
to say in the non-relativistic approximation (c → ∞), the
usual harmonic oscillator spectrum and the corresponding
normalized wave functions are regained.
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